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Hardware Description Languages

I[EEE TRANSACTIONS ON COMPUTERS, VOL. C-17, NO. 9, SEPTEMBER 1968
A Digital System Design Language (DDL)
JAMES R. DULEY AND DONALD L. DIETMEYER

SPECIFYING, documenting, and controlling the

design of digital systems are problems of increasing

severity as such systems continue to grow in size

and complexity. Wilkes and Stringer [2] first recognized

that a suitable design language could greatly reduce the
magnitude of these problems and lead to a complete,

precise, yet concise description of digital systems. Unfortunately,
their contribution is mostly oriented toward

the machine that they were developing at the time

and is not generally useful.


http://www.computer.org/csdl/trans/tc/1968/09/01687472.pdf
http://www.computer.org/csdl/trans/tc/1968/09/01687472.pdf
http://www.computer.org/csdl/trans/tc/1968/09/01687472.pdf

Hardware Description Languages

[2] M. V. Wilkes and J. B. Stringer, "Micro-programming and the

design of the control circuits in an electronic digital computer,"
Proc. Cambridge Phil. Socs., vol. 44, pt 2, pp. 230-238, April
1953.



http://research.microsoft.com/en-us/um/people/gbell/computer_structures_principles_and_examples/csp0174.htm
http://research.microsoft.com/en-us/um/people/gbell/computer_structures_principles_and_examples/csp0174.htm
http://research.microsoft.com/en-us/um/people/gbell/computer_structures_principles_and_examples/csp0174.htm
http://research.microsoft.com/en-us/um/people/gbell/computer_structures_principles_and_examples/csp0174.htm

Hardware Description Languages

Reed 1952

Symbolic synthesis of digital computers
Proc. ACM National Meeting (Toronto)



http://dl.acm.org/citation.cfm?id=809004&dl=ACM&coll=DL&CFID=701781611&CFTOKEN=14204038
http://dl.acm.org/citation.cfm?id=809004&dl=ACM&coll=DL&CFID=701781611&CFTOKEN=14204038
http://dl.acm.org/citation.cfm?id=809004&dl=ACM&coll=DL&CFID=701781611&CFTOKEN=14204038

Hardware Description Languages

In an ideal sense a binary digital computer or what might
be called more generally a Boolean machine is an
automatic operational filing system...

This information is stored or recorded in sets of
elementary boxes or files, each containing one of the
symbols 0 or 1. This information is either transformed or
used to change other files or itself as a function of the
past contents of all files within the system. If the contents
of all files within the system are constrained to change
only at discrete points of time, say the pointsn (n=1,2,3,
...), then the machine may be termed a synchronous
Boolean machine
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APL

A formal description of sysTEM/360

by A. D. Falkoff, K. E. Iverson,
and E. H. Bussenguth

This paper presents a precise formal description of a complete
eomputer gyvetem, the 1pm sysrem, /280, The description 8 [une-
tional: it describes the behavior of the machine as seen by the
programmer, irrespective of any particular physical implemention,
and oxpressly specifies the atate of every register or facility acees-
gible to the programmer for every moment of syslem operation
at which this information is actually available.

IBM Systems Journal Vol 3, No.3 1964



Quality of designs from an automatic logic generator (ALERT)
Design Automation Workshop (DAC’70)

APL

IBM 1800



http://dl.acm.org/citation.cfm?id=805114

Late /70s




Henderson, Functional Geometry, 1982



http://dl.acm.org/citation.cfm?id=802148
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Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its
Algebra of Programs

John Backus
IBM Research Laboratory, San Jose

An alternative functional style of programming is
founded on the use of combining forms for creating
programs. ... Combining forms can use high level
programs to build still higher level ones in a style not
possible in conventional languages. ...

Associated with the functional style of
programming is an algebra of programs whose
variables range over programs and whose
operations are combining forms.

Turing award 1977
Paper 1978



http://dl.acm.org/citation.cfm?id=359579
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Plessey designers write

Using muFP, the array processing element was described in just one line of code and the
complete array required four lines of muFP description. muFP enabled the effects of
adding or moving data latches within the array to be assessed quickly. Since the results
were in symbolic form it was clear where and when data within the results was input into
the array making it simple to examine the data-flow within the array and change it as
desired. This was found to be a very useful way to learn about the data dependencies
within the array.

[...]

From the experience gained on the design, the most important consideration when
designing array processors is to ensure that the processor input/output requirements can
be met easily and without sacrificing array performance. The most difficult part of the
design task is not the design of the computation units but the design of the data paths and
associated storage devices. It is essential to have the right design tools to aid and improve
the design process. Early use of tools to explore the flow of data within and around the
array and to understand the data requirements of the array is important. muFP has been
shown to be useful for this purpose.

Bhandal et al, An array processor for video picture motion estimation,
Systolic Array Processors, 1990, Prentice Hall

work with Plessey done by G. Jones and W. Luk






REALITY

RSN

WIKIPEDIA
Den fria encyklopedin

Kategori:Hardvarubeskrivande sprak

Artiklar i kategorin "Hardvarubeskrivande sprak"
Foljande 2 sidor (av totalt 2) finns i denna kategori.
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Verilog
VHDL


http://sv.wikipedia.org/wiki/Verilog
http://sv.wikipedia.org/wiki/VHDL

Algorithms in hardware
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http://www.cs.kent.edu/~batcher/sort.pdf



http://www.cs.kent.edu/%7Ebatcher/sort.pdf
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oemerge :: Int -> ([a] -> [a]) -> [a] -> [4]
oemerge 1 s2 =s2
oemerge n s2 = ilv (oemerge (n-1) s2) ->- odds s2
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More combinators
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Canfield & Williamson



http://www.tandfonline.com/doi/pdf/10.1080/03081089108818055%23.Vd4jkCyqqkp

Canfield & Williamson
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60 best
(see Knuth)

Canfield & Williamson
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http://cs.aminer.org/publication/finding-regularity-describing-and-analysing-circuits-that-are-not-quite-regular-86886.html;jsessionid=22A92367F808CB4C71DAF86B1A93D209.tt

SEARCH

“Recently, a sequence of 2"-input prefix circuits
of depth n and complexity L(2") (at least for n <=

25) was discovered by Sheeran [12, 13]
via computer programming.”

JFP Vol 21 Issue 01 2011



http://journals.cambridge.org/download.php?file=/10989_6114D6963BD3F6928D29B107D7860305_journals__JFP_JFP21_01_S0956796810000304a.pdf&cover=Y&code=efc03e8976253867e051a6bcc1b17fc3

SEARCH

On the complexity of parallel prefix circuits *

Igor S. Sergeev!

Abstract

It iz shown that complexity of implementation of prefix sums of
m variables (i.e. functions ryo...o0mx, 1 < i < m) by circuits of
depth [log; m] in the case m = 2" is exactly

3.5.2" — (8.5 4+ 3.5(n mod 2))21™?) 4 n 4+ 5.

Electronic Colloquium on Computational Complexity March 2013


http://eccc.hpi-web.de/report/2013/041/
http://eccc.hpi-web.de/report/2013/041/
http://eccc.hpi-web.de/report/2013/041/

364

notation => play => new algorithms



SEARCH (examples)

% SPIRAL
Software/Hardware Generation for DSP Algorithms


http://spiral.net/
http://spiral.net/

SEARCH (examples)

VALSALAM AND MIIKKULAIMEMN
Journal of Machine Learning

Research 14 (2013)

n 1211314151617 181920 2] 22 | 23

Previous hest Hand-design and END Batcher's and Van Voorhis™ merge
EVIOUS BESt | 39 | 45 | 51 | 56 73 70 | 88 | 93 | 103 | 110 | 118

SENSO 39 | 45 | 51 | 56 TJ1||78 | 86 | 92 | 102 [ 108 | 118

3|3



http://dl.acm.org/citation.cfm?id=2502591&CFID=701781611&CFTOKEN=14204038

Tl

SEARCH (examples)

upper bound
cld lower bound

al g ]D‘HE’I.' I:lﬂl.lil'l.d

Codish et al
25 comparators is optimal
when sorting 9 inputs


http://arxiv.org/abs/1405.5754

Design FOR verification

Puts circuits to use in a new way

Example: MiniSat+

Translating Pseudo-Boolean Constraints into SAT  (Een and S6rensson)

Journal on Satisfiability, Boolean Modeling and Computation 2 (2006)


http://minisat.se/MiniSat+.html

HW + FP in the real world?



HW + FP in the real world?

4195835.0 - 3145727.0*%(4195835.0/3145727.0) =0 (Correct value)
4195835.0 - 3145727.0*%(4195835.0/3145727.0) = 256 (Flawed Pentium)


http://www.trnicely.net/pentbug/pentbug.html

HW + FP in the real world?

Intel Forte System 1000s users

Thanks to Carl Seger (Intel)



HW + FP in the real world?

Intel Forte System 1000s users

fl

lazy functional language with built-in BDDs, decision procedures
and a HW symbolic simulator (Symbolic Trajectory Evaluation engine)

Thanks to Carl Seger (Intel)



HW + FP in the real world?

Intel Forte System 1000s users

fl

lazy functional language with built-in BDDs, decision procedures
and a HW symbolic simulator (Symbolic Trajectory Evaluation engine)

Design language

High-level specification language

Object language for theorem proving

Scripting language

Implementation language for formal verification tools and theorem provers

Thanks to Carl Seger (Intel)



Examples of fl as Design Language

High level With physical placement information
S Actual SHAL computation /f Make a buffer tree for input inp feeding n vertically aligred
let process_chunk_fun Hil b = /¢ 'component_height' high components,
let Hill = split_shash Hil in nlet wk_buffer_tree {inp:: *xu} n component_height-»1 driver_at_top->F =
let U = [extend_block t bt | t in 78 — 0] in n=10=>([], rpspacer 0 0) . .
let do_iter t [e,d,c,b,a] = let name = hd (hdepends (destr inp)) in
15T = (a RATL. 5) "t fntbheod e '+ K160t '+ U™t in let grp_sz = maw MIN_BUFFERING {ceiling (sort (int2float n)}) in
let & = d in let needed = {n+{grp_sz-1))/grp_sz in
let d = c in let bufs = {mk_vars ("tmp_""hame) needed :: xw list} then
let c = b FOTL 30 in let ninp = fmk_var ("tmp_nes "Tnamel:: #wl then
let b = 3 in let rht = row_height*component_height in
let a = T in let minwid = {needed+1l}#m3_pitch in Jf Ensure sufficient wiring tracks
[e.d,c,b,a] let ckt =
in (dPlV@P_at_l D => {
let edcha = itlist do_iter (F9--03 Hill in Wire_o Isfd ning
let Hrewl = map? (defix '+') edcha Hill in -4 o
unsplit_shash Hnewl : l(zpspacer minwid {{grp_sz/2-1)#rht))
' rpspacer ninwid ({grp_sz,/2)#rht)
bb
RTL level (forall_wsbut [ (i,0t) | zip_in_id (butlast bufs) 1.
1et tst = wire_o ninp ot #-#
s IETE&FHEE {rpspacer minwid (min {{grp_sz-1)3rht)
bit_imput  clk (((driver_at top=>n | (n-1))-
ap Inpit op ’ {arp_sz/2+1+(i-1)%arp_sz)-14rht) )
bute_imput 2 b. %—#
Egtg—gﬂtgﬂt Egzé éwihe_o ning (last bufs))
CELL "tst' ( (&PiVEP at_top =» (
ff clk a lad & = _—
£ olk b lhd # {rpspacer minwid
2dd? lad hd ltnp # )l {max O ((n-(grp_sz/2+1+{needed-1)tgrp_sz))srht)})
and? lad 'bd !tmp2 # i inwid
pspacer minwi
2;22 i:g EES i%mgﬁ x i (max O ((n-1-(grp_sz/2+1+(needed-1)*grp_sz) J#rht) )
Tgﬁpa!ifz!éggg gp [ {wire_o ing ning)
(GNDop,  tmp2), ; )
{ORop, ltnp3;, in
(#0Rop, Itmad), let buf_drivers = map O\, el ((ifgrp_szi+l) bufs) (0 upto (n-1)) then

IO(QUTDD, Itmaf) (buf_drivers, ckt)

Ff clk ltnph lres # 3
ff clk ltnp res

Slide provided by Carl Seger (Intel)



Example of fl as Specification Language

 Use the builtin BDDs
and the ability to write
if-then-else conditions
over expressions to
create concise and
clean specifications for
even very complex
operations.

e Example: Floating point
addition

B/ Floating point add specification
let ADD po rc o ind inZ =

Sf Are we going to swap - i.e, i=s |inl] > |in2| 7
let zwap = (no_signs inl) " (nho_signs in2) in
ff Get the smaller magnitude into fpl, larger into fp2
let fpl = IF =swap THEM inZ EL3E inl in
let fp2 = IF =swap THEM inl ELSE in2 in
S Mow, take apart into exponents and significands
val (ewpl,zefl) = =plit_fp fol in
val (exp2,sef?) = split_fp fp2 in
S/ Restore ewxponents for denorms and zeros
let minesp = bias (0-({2%x16)-2)) in
let exl = IF {expl '= 0) THEM minexp ELSE expl in
let ex? = IF (exp2 '= 0) THEW minewxp ELSE expZ in
£f How, shift fpl to align with fp2.
£f Pad out both numbers with the internal sticky bit,
let sgfl' = srshift 68 rsh (sgfl @ [F,F]} in
let sgf2' = sgf2 @ [F,F] in
£f Perforn the sum {or subtract)
let true_add = (sign fpl = =zign f2) in
let sum = IF true_add THEW (sgf2' '+' sgfl') ELSE (sgf2' '-' sgfl') in
let ex = ex? in
let =gn = zign fp2 in
/f Renormalize, if necessary (first renorwmalization)
val (O:J:ren) = sum in
let zz = zeros rem in
let I1sh = z= '+ 1 in
S {At this point O <= lsh <= B8]}
val {nsuml,nexl) =

IF O THEN (rshift 1 sum, e« '+ 1) ELSE

IF (MOT O AHD NOT J) THEW (=lshift 68 lsh sum, (ex '-' lsh) ELSE

{=um,ex)
in
£ Mow, round the result according to the current precision
let reum = BHD pc rc o=2n nsunl in
£f Right-shift renormalization, if necessary E}
let 0 = hd rsum in
let nsunZ = IF 0 THEM {[F] @ butlast rsum) ELSE rsum in
let nex? = IF 0 THEM fnexl '+ 1) ELSE nexl in
IF (HOT(ha{tl nzum2)}) THEM

IF (nzum? = {nat_to_bv 68 033 THEN

{{IF {{rc = TO_WEG_IMF} AMD WOT acdd) THEW [T] ELSE [F]) @
expzeros @ nsunZ)
ELSE {[=gn] @ expzeros @ nsunz)
£

/f Otherwize, return the answer.
{[sgn] @ rnex? @ nsum2)

Slide provided by Carl Seger (Intel)



Example of Systems Built in fl

STEP: Formal Verification tool: IDV: Integrated Design and Verification:
120k lines of fl + 25k lines of Tcl/Tk 280k lines of fl + 40k lines of Tcl/Tk

grated Design and Syst Gl Proforvmces | o
Sokction Wavefonn Simelation ™ Shaw valuos: BN - | svc | st ey Properties B
e | '} o 3 |3 sgnal Wavetonm
= ) F: o ~opcose... | dowetonn_ | Databass: | 4| Opem 0B nionty | ackup s 08
- = ok .3 ' =
) 3 — ] View Transformation: P foge i
o x| PP SR— | | Setect by ot name | - -
T . ® ORI . - [me BT
o pe— P © O =T
0 x  EE ] ] / N, sieme_us_wewtd (F348)
i 5 o R N / "%
3 X Pl S T W ( 7]
A !
— \ sed cormectng wA
| 1
1o i s
wd B0 "
1= i \om & wth A ram
A \ (a)
S I = ol It o
5 g
] [ r
= i
300 B
X
D '—.'..' B \ Sed CAM (#56) Y Replaced wah, =
1 L LS
sene_es L
Cacha_fead | P
1 x
. | .
) ' § L]
it Savu termup
ypo from get_STE_raprasen (am) " typa
isteing -> string tring
compl alue

Forte How verification is done in practice

Slide provided by Carl Seger (Intel)


https://www.cs.ox.ac.uk/tom.melham/res/forte.html
http://dl.acm.org/citation.cfm?id=1575095

The Centaur Media-Unit, Verification Tool Flow

Files : i
module Simulator function

Veril fadd EMOD
erlng+ EMOD Symbolic faddAIG

— Per-instruction
Case-splitting, | AlGs

Parameh“izaﬁnn)

Instruction Symbolic Spec Hardware
Spec Spec Output Output
BDDs BDDs

c=a+b

AIGZBDD

Further readin
& Slide by Warren Hunt (UT Austin)


http://fv.centtech.com/

Thanks to R.S. Nikhil (Bluespec)

Bluespec

FP in HW design @



Bluespec

FP in HW design ﬁ

(FPGA layout by Satnam Singh)

Thanks to R.S. Nikhil (Bluespec)



Bluespec

FP in HW design ﬁ malware / hacking

(FPGA layout by Satnam Singh)

Thanks to R.S. Nikhil (Bluespec)



BSV iIs based on declarative languages

(Verilog and VHDL are the main languages for HW design; > 25 years old)

Design written in BSV
language

bsc compiler
(“high level synthesis”: rule analysis,
scheduling, optimization, ...)

Verilog

—

[Existing RTL-netlist synthesis tools j

Borrow best ideas from modern programming
languages, formal verification systems, and
concurrency.

Abandon sequential von Neumann legacy.

Behavior spec:

Guarded Atomic Transaction Rules

e cf. Guarded Commands (Dijkstra), TLA+
(Lamport), UNITY (Chandy/Mishra), EventB
(Abrial), ...

e Fundamentally parallel/concurrent

Architecture spec:

Pure functional programming language

e cf. Haskell

e Strong type-checking, polymorphic types,
typeclasses, higher-order functions,
modularity, parameterization

Slide by R.S.Nikhil (Bluespec)



The IFFT computation (specification)

(as used in 802.11a Transmitter, for example)

outOI

» =g > > > /—
> 3] Bfly4 3 )] Bfly4 > —| outz
[ ) [ D2 N
= L ==L = \‘l
% % % \ out3]

> I"‘ > > IN > > |(J0 out4
> S| Bfly4 > 3| Bfly4 > =

in63 \‘ out6

All numbers are complex and
represented as two sixteen bit
quantities. Fixed-point

Radix 4 butterfly arithmetic is used to reduce
area, power, ...

Slide by R.S.Nikhil (Bluespec)



IFFT: the HW architecture space
(varying in area, power, clock speed, latency, throughput)

II,

. . /”’ ~~~~~~~~ ‘~>i
Direct combi- | E

national circuit |

. fewer
\_ funneling Bfly4s unfunneling

In any stage, use fewer
than 16 Bfly4s

Ilterate 1

’
i
|
—
[—ap
- <
-«
-
—_ <
-
—
1
\

Varying
degrees of
pipelining

HEE

Slide by R.S.Nikhil (Bluespec)



Rule semantics enables compositionality of pipelines

Different points on a path, or on different paths, may access
some shared resource (such as a RAM or a counter), at
unpredictable (perhaps data dependent) times.

Previous systems have also used higher-order functions to express structural composition of circuits.
E.g., Lava [Bjesse, Claessen, Sheeran, Singh 1998].

But they were based on traditional synchronous clocked digital circuit semantics, so user has to
manually manage pipeline balancing?, flow control, and access to shared resources.

Rule semantics are naturally “asynchronous”, enabling separation of pipeline structure from those
concerns.

!Balancing: latencies may be data-dependent, and different on different paths.

Slide by R.S.Nikhil (Bluespec)

64



100 lines of BSV source code based on 4 parameters,
express all 24 architectures in the figure, with a 10x variation in area/power

(which is “best” depends on target requirements, e.g., server vs. mobile)

« fully pipelined, flow-controlled
« all control logic correct by construction

Pure combinational circuit
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Synthesis from BSV is competitive with hand-coded RTL

Example: Deblocking filter for H.264 and VP8 video decoders

Relative silicon area (smaller is better)

— m

functionality VP8 V!
Hand-coded VHDL 1x 2X
(reference) (estimate)
BSV 0.18x 0.33x 0.47x 0.81x

N J

h

These results are not just competitive with
RTL, but far superior. Can this really be true?
Yes, sometimes.

GWIZY H.264 Deblocking Filter
BS 6H.264 Boundary Strength
il VP8 Deblocking Filter Slide by R.S.Nikhil (BlUESDEC)
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BSV

Often BEATS hand-coded RTL code

Algorithmically superior designs



BSV

Often BEATS hand-coded RTL code
Algorithmically superior designs

Refinement, evolution, major architectural change EASY

Types, Functional Programming and Atomic Transactions
in Hardware Design Nikhil LNCS 8000


http://link.springer.com/chapter/10.1007/978-3-642-41660-6_22

Bluecheck

A Generic Synthesisable Test Bench (Naylor and Moore, Memocode 2015)

QuickCheck in HW design!

Idea of a generic testbench is unheard of in mainstream HDLs


https://github.com/CTSRD-CHERI/bluecheck/raw/master/bluecheck.pdf

stack interface

/[ A stack of 2°n elements of typet

interface Stack#(type n, type t);
method Action push(t x);
method Action pop;

method Bool ISsEmpty;

method t top;

method Action clear;
endinterface




module [Specification] stackSpecAlg ();

// Create two instances of implementation
Stack#(8, Bit#(4)) s1 <- mkBRAMStack();
Stack#(8, Bit#(4)) s2 <- mkBRAMStack();

// On s1, push x, then pop it
function pushPop(x) =
seq sl.push(x); s1.pop; endseq;

// On s2, do nothing
function nop(x) = seq endseq;

equiv("pushPop", pushPop, nop);
equiv("push", s1.push, s2.push);
equiv("pop", sl.pop, s2.pop);
equiv("top" , sl.top, s2.top);
endmodule



=== Depth 20, Test 15/10000 ===
11: push(12)

22: push(2)

23: pushPop(14)

27: pop

28: top failed: 2v 12

Continue searching?



Synthesisable!

Iterative deepening and shrinking on




=== Depth 10, Test 5/10000 ===
setAddrMap(<15, 11, 8, 5>)
Core 0: MEM[3] ==

Core 0: MEM[7] := 8

Core 1: MEM[3] :=9

Core 1: MEM[7] ==

Core 0: MEM[3] ==

Not sequentially consistent



Pushing verification



Pushing verification

Formal Verification of Hardware Synthesis CAV’13


http://adam.chlipala.net/papers/FesiCAV13/

Pushing verification

Formal Verification of Hardware Synthesis
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CAV’13


http://adam.chlipala.net/papers/FesiCAV13/

Pushing verification

first machine verification of sequential consistency for a
multicore hardware design that includes caches and
speculative processors (CAV’15)


http://adam.chlipala.net/papers/BlueCAV15/



http://gergo.erdi.hu/blog/tags/FPGA/
http://gergo.erdi.hu/blog/tags/FPGA/

Feldspar + synchronous programming for hardware at Chalmers

: “add Bluespec features”

Satnam Singh: | wonder!

CA\aSH



http://gergo.erdi.hu/blog/tags/FPGA/
http://gergo.erdi.hu/blog/tags/FPGA/
http://ku-fpg.github.io/software/kansas-lava/
http://www.clash-lang.org/
http://www.ujamjar.com/hardcaml/

Chisel

In this paper, we introduce Chisel (Constructing Hardware In a Scala
Embedded Language), a new hardware design language we have
developed based on the Scala programming language [8]. Chisel is
intended to be a simple platform that provides modern programming
language features for accurately specifying low-level hardware blocks,
but which can be readily extended to capture many use-

ful high-level hardware design patterns.

(DAC’12)

https://chisel.eecs.berkeley.edu/


https://chisel.eecs.berkeley.edu/

Cryptol

Designing Tunable, Verifiable Cryptographic Hardware Using Cryptol.
In Design and Verification of Microprocessor Systems for High-
Assurance, David S. Hardin, Editor. Springer 2010

The declarative quality of Cryptol,

which makes Cryptol a good specification

language, also plays a key role in the

effectiveness of automatic generation

of FPGA cores. In contrast, the inherent U ndEIay @
sequentiality of mainstream programming

languages makes them a poor match

for the highly parallel nature of FPGAs.


http://www.springer.com/gp/book/9781441915382



http://www.openspl.org/
http://www.openspl.org/

Things | learned while designing
the Epiphany & Parallella
' '

Presentation at

Chalmers University of
Technology

Feb 2,2015

Slide from Chalmers Tech Talk by Andreas Olofsson (CEO Adapteva)


http://complab.github.io/abstracts.html%23olofsson

Epiphany-1V

27

Link Logic 10 Pads

Aug 2011 tapeout
(Jul 2012 samples)
64 cores, 28nm

50 GFLOPS/W

RTL changes 2 days
before TO

Done in 12 weeks!

Slide from Chalmers Tech Talk by Andreas Olofsson (CEO Adapteva)
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http://complab.github.io/abstracts.html%23olofsson

More HW...

39

June 2014

Shipped to 200
Universities & 10,000
developers

Built the "A1”, the
world's densest
cluster.

Where are the BIG
customers???2i




MY FINAL LESSON:
(took me 7 years to learn)

IT'S THE SOFTWARE
STUPID!!!

40

Slide from Chalmers Tech Talk by Andreas Olofsson (CEO Adapteva)


http://complab.github.io/abstracts.html%23olofsson

What I (still) Know:

* Moore's law WILL come to an end

* Parallel computingis inevitable

* Architectures like Epiphany are the future
* CPUs, FPGASs, and manycore will coexist

* The world will continue to be driven by $S

42 https://www.parallella.org/

Slide from Chalmers Tech Talk by Andreas Olofsson (CEO Adapteva)


http://complab.github.io/abstracts.html%23olofsson
https://www.parallella.org/
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Programming

Needs to deal with heterogeneity and massive parallelism



Programming

Needs to deal with heterogeneity and massive parallelism

Much relevant work in our community
Blelloch’s ICFP invited talk
locality work

Accelerate
Delite
Yesterday’s keynote

Parallelism session this afternoon! and much more



https://vimeo.com/16541324
http://repository.cmu.edu/cgi/viewcontent.cgi?article=3546&context=compsci
https://hackage.haskell.org/package/accelerate
http://stanford-ppl.github.io/Delite/

But STILL | lack a High Level Language to enable THINKING about playing with
time and space (the way hardware designers do)

Many have come close

| am thinking about combinators (of course), inspired by BMMC and much
else

Help!

Workshops Functional High Performance Computing Array



http://www.cs.dartmouth.edu/%7Ethc/thesis.html
https://sites.google.com/site/fhpcworkshops/fhpc-2015/program-with-abstracts
http://www.sable.mcgill.ca/array/

Programming future machines will be more like hardware design
than is comfortable!

Not only is FP + HW still interesting! The ideas may be important
even just for SW ©
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