
Hardware Design and Functional Programming:
Still Interesting after All These Years

Mary Sheeran
Chalmers

Hardware Description Languages
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-17, NO. 9, SEPTEMBER 1968
A Digital System Design Language (DDL)
JAMES R. DULEY AND DONALD L. DIETMEYER

SPECIFYING, documenting, and controlling the
design of digital systems are problems of increasing
severity as such systems continue to grow in size
and complexity. Wilkes and Stringer [2] first recognized
that a suitable design language could greatly reduce the
magnitude of these problems and lead to a complete,
precise, yet concise description of digital systems. Unfortunately,
their contribution is mostly oriented toward
the machine that they were developing at the time
and is not generally useful.

http://www.computer.org/csdl/trans/tc/1968/09/01687472.pdf
http://www.computer.org/csdl/trans/tc/1968/09/01687472.pdf
http://www.computer.org/csdl/trans/tc/1968/09/01687472.pdf

Hardware Description Languages

[2] M. V. Wilkes and J. B. Stringer, "Micro-programming and the
design of the control circuits in an electronic digital computer,"
Proc. Cambridge Phil. Socs., vol. 44, pt 2, pp. 230-238, April
1953.

http://research.microsoft.com/en-us/um/people/gbell/computer_structures_principles_and_examples/csp0174.htm
http://research.microsoft.com/en-us/um/people/gbell/computer_structures_principles_and_examples/csp0174.htm
http://research.microsoft.com/en-us/um/people/gbell/computer_structures_principles_and_examples/csp0174.htm
http://research.microsoft.com/en-us/um/people/gbell/computer_structures_principles_and_examples/csp0174.htm

Hardware Description Languages

Reed 1952
Symbolic synthesis of digital computers
Proc. ACM National Meeting (Toronto)

http://dl.acm.org/citation.cfm?id=809004&dl=ACM&coll=DL&CFID=701781611&CFTOKEN=14204038
http://dl.acm.org/citation.cfm?id=809004&dl=ACM&coll=DL&CFID=701781611&CFTOKEN=14204038
http://dl.acm.org/citation.cfm?id=809004&dl=ACM&coll=DL&CFID=701781611&CFTOKEN=14204038

Hardware Description Languages
In an ideal sense a binary digital computer or what might
be called more generally a Boolean machine is an
automatic operational filing system…
This information is stored or recorded in sets of
elementary boxes or files, each containing one of the
symbols 0 or 1. This information is either transformed or
used to change other files or itself as a function of the
past contents of all files within the system. If the contents
of all files within the system are constrained to change
only at discrete points of time, say the points n (n = 1,2,3,
...), then the machine may be termed a synchronous
Boolean machine

http://dspace.mit.edu/bitstream/handle/1721.1/11173/34541425-MIT.pdf?sequence=2
http://dspace.mit.edu/bitstream/handle/1721.1/11173/34541425-MIT.pdf?sequence=2

APL

IBM Systems Journal Vol 3, No. 3 1964

Quality of designs from an automatic logic generator (ALERT)
Design Automation Workshop (DAC’70)

IBM 1800

2.6
1.3

APL

http://dl.acm.org/citation.cfm?id=805114

Late 70s

Henderson, Functional Geometry, 1982

http://dl.acm.org/citation.cfm?id=802148

Hardcover

$0.77

An alternative functional style of programming is
founded on the use of combining forms for creating
programs. … Combining forms can use high level
programs to build still higher level ones in a style not
possible in conventional languages. …

Turing award 1977
Paper 1978

Associated with the functional style of
programming is an algebra of programs whose
variables range over programs and whose
operations are combining forms.

http://dl.acm.org/citation.cfm?id=359579

Users!

Plessey

Users!

Plessey

Plessey designers write
Using muFP, the array processing element was described in just one line of code and the
complete array required four lines of muFP description. muFP enabled the effects of
adding or moving data latches within the array to be assessed quickly. Since the results
were in symbolic form it was clear where and when data within the results was input into
the array making it simple to examine the data-flow within the array and change it as
desired. This was found to be a very useful way to learn about the data dependencies
within the array.
[...]
From the experience gained on the design, the most important consideration when
designing array processors is to ensure that the processor input/output requirements can
be met easily and without sacrificing array performance. The most difficult part of the
design task is not the design of the computation units but the design of the data paths and
associated storage devices. It is essential to have the right design tools to aid and improve
the design process. Early use of tools to explore the flow of data within and around the
array and to understand the data requirements of the array is important. muFP has been
shown to be useful for this purpose.

Bhandal et al, An array processor for video picture motion estimation,
Systolic Array Processors, 1990, Prentice Hall

work with Plessey done by G. Jones and W. Luk

Plessey
GEC

Kategori:Hårdvarubeskrivande språk
Artiklar i kategorin "Hårdvarubeskrivande språk"
Följande 2 sidor (av totalt 2) finns i denna kategori.
V
Verilog
VHDL

REALITY

http://sv.wikipedia.org/wiki/Verilog
http://sv.wikipedia.org/wiki/VHDL

Algorithms in hardware

In pictures

ilv

two

two (ilv f) ilv (two f)

bfly

bfly

bfly n f = Ilv (bfly (n-1) f) ->- evens f

bitonic

>=

Batcher’s sorter (bitonic)

S

S

M

M
r
e
v
e
r
s
e

http://www.cs.kent.edu/~batcher/sort.pdf

http://www.cs.kent.edu/%7Ebatcher/sort.pdf

80

oemerge :: Int -> ([a] -> [a]) -> [a] -> [a]
oemerge 1 s2 = s2
oemerge n s2 = ilv (oemerge (n-1) s2) ->- odds s2

two ilv odds

63

More combinators

que

vee

Canfield & Williamson

ilv que odds

http://www.tandfonline.com/doi/pdf/10.1080/03081089108818055%23.Vd4jkCyqqkp

ilv que

Canfield & Williamson

63

http://www.tandfonline.com/doi/pdf/10.1080/03081089108818055%23.Vd4jkCyqqkp

ilv que

Canfield & Williamson

63

60 best
(see Knuth)

http://www.tandfonline.com/doi/pdf/10.1080/03081089108818055%23.Vd4jkCyqqkp

median

96<=

>=

median

96

98 Charme

99 Paeth
Graphics Gems I

http://cs.aminer.org/publication/finding-regularity-describing-and-analysing-circuits-that-are-not-quite-regular-86886.html;jsessionid=22A92367F808CB4C71DAF86B1A93D209.tt

SEARCH
“Recently, a sequence of 2n-input prefix circuits
of depth n and complexity L(2n) (at least for n <=
25) was discovered by Sheeran [12, 13]
via computer programming.”

JFP Vol 21 Issue 01 2011

http://journals.cambridge.org/download.php?file=/10989_6114D6963BD3F6928D29B107D7860305_journals__JFP_JFP21_01_S0956796810000304a.pdf&cover=Y&code=efc03e8976253867e051a6bcc1b17fc3

SEARCH

Electronic Colloquium on Computational Complexity March 2013

http://eccc.hpi-web.de/report/2013/041/
http://eccc.hpi-web.de/report/2013/041/
http://eccc.hpi-web.de/report/2013/041/

364

notation => play => new algorithms

SEARCH (examples)

http://spiral.net/
http://spiral.net/

SEARCH (examples)

Journal of Machine Learning
Research 14 (2013)

http://dl.acm.org/citation.cfm?id=2502591&CFID=701781611&CFTOKEN=14204038

SEARCH (examples)

Codish et al
25 comparators is optimal
when sorting 9 inputs

http://arxiv.org/abs/1405.5754

Design FOR verification

Puts circuits to use in a new way

Example: MiniSat+

Translating Pseudo-Boolean Constraints into SAT (Een and Sörensson)

Journal on Satisfiability, Boolean Modeling and Computation 2 (2006)

http://minisat.se/MiniSat+.html

HW + FP in the real world?

HW + FP in the real world?

4195835.0 - 3145727.0*(4195835.0/3145727.0) = 0 (Correct value)
4195835.0 - 3145727.0*(4195835.0/3145727.0) = 256 (Flawed Pentium)

http://www.trnicely.net/pentbug/pentbug.html

HW + FP in the real world?

Intel Forte System 1000s users

Thanks to Carl Seger (Intel)

HW + FP in the real world?

Intel Forte System 1000s users

fl

lazy functional language with built-in BDDs, decision procedures
and a HW symbolic simulator (Symbolic Trajectory Evaluation engine)

Thanks to Carl Seger (Intel)

HW + FP in the real world?

Intel Forte System 1000s users

fl

lazy functional language with built-in BDDs, decision procedures
and a HW symbolic simulator (Symbolic Trajectory Evaluation engine)

Design language
High-level specification language
Object language for theorem proving
Scripting language
Implementation language for formal verification tools and theorem provers

Thanks to Carl Seger (Intel)

Examples of fl as Design Language

RTL level

High level With physical placement information

Slide provided by Carl Seger (Intel)

Example of fl as Specification Language

• Use the builtin BDDs
and the ability to write
if-then-else conditions
over expressions to
create concise and
clean specifications for
even very complex
operations.

• Example: Floating point
addition

Slide provided by Carl Seger (Intel)

Example of Systems Built in fl

STEP: Formal Verification tool:
120k lines of fl + 25k lines of Tcl/Tk

IDV: Integrated Design and Verification:
280k lines of fl + 40k lines of Tcl/Tk

Slide provided by Carl Seger (Intel)
Forte How verification is done in practice

https://www.cs.ox.ac.uk/tom.melham/res/forte.html
http://dl.acm.org/citation.cfm?id=1575095

Slide by Warren Hunt (UT Austin)
Further reading

http://fv.centtech.com/

Bluespec

FP in HW design

Thanks to R.S. Nikhil (Bluespec)

Bluespec

FP in HW design

Thanks to R.S. Nikhil (Bluespec)

(FPGA layout by Satnam Singh)

Bluespec

FP in HW design

Thanks to R.S. Nikhil (Bluespec)

(FPGA layout by Satnam Singh)

malware / hacking

BSV is based on declarative languages

Design written in BSV
language

bsc compiler
(“high level synthesis”: rule analysis,
scheduling, optimization, …)

Verilog

Existing RTL-netlist synthesis tools

Borrow best ideas from modern programming
languages, formal verification systems, and
concurrency.

Abandon sequential von Neumann legacy.

Behavior spec:
Guarded Atomic Transaction Rules
• cf. Guarded Commands (Dijkstra), TLA+

(Lamport), UNITY (Chandy/Mishra), EventB
(Abrial), …

• Fundamentally parallel/concurrent

Architecture spec:
Pure functional programming language
• cf. Haskell
• Strong type-checking, polymorphic types,

typeclasses, higher-order functions,
modularity, parameterization

(Verilog and VHDL are the main languages for HW design; > 25 years old)

Slide by R.S.Nikhil (Bluespec)

62

in0

…

in1

in2

in63

in3

in4

Bfly4

Bfly4

Bfly4

x16

Bfly4

Bfly4

Bfly4

…

Bfly4

Bfly4

Bfly4

…

out0

…

out1

out2

out63

out3

out4

Perm
ute_1

Perm
ute_2

Perm
ute_3

All numbers are complex and
represented as two sixteen bit
quantities. Fixed-point
arithmetic is used to reduce
area, power, ...

*

*

*
*

+

-

-
+

+

-

-
+

*j
t2

t0

t3

t1

The IFFT computation (specification)

(as used in 802.11a Transmitter, for example)

Radix 4 butterfly

Slide by R.S.Nikhil (Bluespec)

63

(varying in area, power, clock speed, latency, throughput)

Varying
degrees of
pipelining

Iterate 1
stage
thrice

Direct combi-
national circuit

funneling unfunneling
fewer
Bfly4s

In any stage, use fewer
than 16 Bfly4s

IFFT: the HW architecture space

Slide by R.S.Nikhil (Bluespec)

64

Rule semantics enables compositionality of pipelines

Previous systems have also used higher-order functions to express structural composition of circuits.
E.g., Lava [Bjesse, Claessen, Sheeran, Singh 1998].

But they were based on traditional synchronous clocked digital circuit semantics, so user has to
manually manage pipeline balancing1, flow control, and access to shared resources.

Rule semantics are naturally “asynchronous”, enabling separation of pipeline structure from those
concerns.

1Balancing: latencies may be data-dependent, and different on different paths.

Different points on a path, or on different paths, may access
some shared resource (such as a RAM or a counter), at
unpredictable (perhaps data dependent) times.

Slide by R.S.Nikhil (Bluespec)

65

100 lines of BSV source code based on 4 parameters,
express all 24 architectures in the figure, with a 10x variation in area/power

(which is “best” depends on target requirements, e.g., server vs. mobile)

• fully pipelined, flow-controlled
• all control logic correct by construction

Results of using PAClib on IFFT

Slide by R.S.Nikhil (Bluespec)

66

Synthesis from BSV is competitive with hand-coded RTL

VP8

H.264

BS

H.264 Deblocking Filter

H.264 Boundary Strength

VP8 Deblocking Filter

resolution

functionality

Hand-coded VHDL
(reference)

1x 2x
(estimate)

BSV 0.18x 0.33x 0.47x 0.81x

VP8

4Kx2K

VP8 H.264 BS

1080p

VP8 VP8 H.264 BS

Relative silicon area (smaller is better)

These results are not just competitive with
RTL, but far superior. Can this really be true?

Yes, sometimes.

Example: Deblocking filter for H.264 and VP8 video decoders

Slide by R.S.Nikhil (Bluespec)

BSV

Often BEATS hand-coded RTL code

BSV

Often BEATS hand-coded RTL code

Algorithmically superior designs

BSV

Often BEATS hand-coded RTL code

Algorithmically superior designs

Refinement, evolution, major architectural change EASY

Types, Functional Programming and Atomic Transactions
in Hardware Design Nikhil LNCS 8000

http://link.springer.com/chapter/10.1007/978-3-642-41660-6_22

Bluecheck

A Generic Synthesisable Test Bench (Naylor and Moore, Memocode 2015)

QuickCheck in HW design!

Idea of a generic testbench is unheard of in mainstream HDLs

https://github.com/CTSRD-CHERI/bluecheck/raw/master/bluecheck.pdf

stack interface

// A stack of 2ˆn elements of type t

interface Stack#(type n, type t);
method Action push(t x);
method Action pop;
method Bool isEmpty;
method t top;
method Action clear;
endinterface

module [Specification] stackSpecAlg ();

// Create two instances of implementation
Stack#(8, Bit#(4)) s1 <- mkBRAMStack();
Stack#(8, Bit#(4)) s2 <- mkBRAMStack();

// On s1, push x, then pop it
function pushPop(x) =
seq s1.push(x); s1.pop; endseq;

// On s2, do nothing
function nop(x) = seq endseq;

equiv("pushPop", pushPop, nop);
equiv("push" , s1.push, s2.push);
equiv("pop" , s1.pop , s2.pop);
equiv("top" , s1.top , s2.top);
endmodule

=== Depth 20, Test 15/10000 ===
11: push(12)
22: push(2)
23: pushPop(14)
27: pop
28: top failed: 2 v 12
Continue searching?

Synthesisable!

Iterative deepening and shrinking on

=== Depth 10, Test 5/10000 ===
setAddrMap(<15, 11, 8, 5>)
Core 0: MEM[3] == 0
Core 0: MEM[7] := 8
Core 1: MEM[3] := 9
Core 1: MEM[7] == 0
Core 0: MEM[3] == 0
Not sequentially consistent

Pushing verification

Pushing verification

Formal Verification of Hardware Synthesis CAV’13

http://adam.chlipala.net/papers/FesiCAV13/

Pushing verification

Formal Verification of Hardware Synthesis CAV’13

http://adam.chlipala.net/papers/FesiCAV13/

Pushing verification

first machine verification of sequential consistency for a
multicore hardware design that includes caches and
speculative processors (CAV’15)

http://adam.chlipala.net/papers/BlueCAV15/

Lava(s)

http://gergo.erdi.hu/blog/tags/FPGA/
http://gergo.erdi.hu/blog/tags/FPGA/

Lava(s)

Feldspar + synchronous programming for hardware at Chalmers

Kansas Lava: “add Bluespec features”

Satnam Singh: I wonder!

CλaSH HardCAML etc

http://gergo.erdi.hu/blog/tags/FPGA/
http://gergo.erdi.hu/blog/tags/FPGA/
http://ku-fpg.github.io/software/kansas-lava/
http://www.clash-lang.org/
http://www.ujamjar.com/hardcaml/

Chisel
In this paper, we introduce Chisel (Constructing Hardware In a Scala
Embedded Language), a new hardware design language we have
developed based on the Scala programming language [8]. Chisel is
intended to be a simple platform that provides modern programming
language features for accurately specifying low-level hardware blocks,
but which can be readily extended to capture many use-
ful high-level hardware design patterns.
(DAC’12)

https://chisel.eecs.berkeley.edu/

https://chisel.eecs.berkeley.edu/

Cryptol

The declarative quality of Cryptol,
which makes Cryptol a good specification
language, also plays a key role in the
effectiveness of automatic generation
of FPGA cores. In contrast, the inherent
sequentiality of mainstream programming
languages makes them a poor match
for the highly parallel nature of FPGAs.

Designing Tunable, Verifiable Cryptographic Hardware Using Cryptol.
In Design and Verification of Microprocessor Systems for High-
Assurance, David S. Hardin, Editor. Springer 2010

Undelay 

http://www.springer.com/gp/book/9781441915382

http://www.openspl.org/
http://www.openspl.org/

What next?

Slide from Chalmers Tech Talk by Andreas Olofsson (CEO Adapteva)

http://complab.github.io/abstracts.html%23olofsson

Slide from Chalmers Tech Talk by Andreas Olofsson (CEO Adapteva)

http://complab.github.io/abstracts.html%23olofsson

Slide from Chalmers Tech Talk by Andreas Olofsson (CEO Adapteva)

http://complab.github.io/abstracts.html%23olofsson

Slide from Chalmers Tech Talk by Andreas Olofsson (CEO Adapteva)

https://www.parallella.org/

http://complab.github.io/abstracts.html%23olofsson
https://www.parallella.org/

HW SW

Haskell
Scala

Racket
C

CPU

HW SW

Haskell

CPU

CPUCPU

CPUCPU

“The FPGAs are moving into the processors”

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

Programming
Needs to deal with heterogeneity and massive parallelism

Programming
Needs to deal with heterogeneity and massive parallelism

Much relevant work in our community
Blelloch’s ICFP invited talk
locality work

Accelerate
Delite
Yesterday’s keynote
Parallelism session this afternoon! and much more

https://vimeo.com/16541324
http://repository.cmu.edu/cgi/viewcontent.cgi?article=3546&context=compsci
https://hackage.haskell.org/package/accelerate
http://stanford-ppl.github.io/Delite/

But STILL I lack a High Level Language to enable THINKING about playing with
time and space (the way hardware designers do)

Many have come close
I am thinking about combinators (of course), inspired by BMMC and much

else
Help!

Workshops Functional High Performance Computing Array

http://www.cs.dartmouth.edu/%7Ethc/thesis.html
https://sites.google.com/site/fhpcworkshops/fhpc-2015/program-with-abstracts
http://www.sable.mcgill.ca/array/

Programming future machines will be more like hardware design
than is comfortable!

Not only is FP + HW still interesting! The ideas may be important
even just for SW 

	Hardware Design and Functional Programming:�Still Interesting after All These Years�
	Hardware Description Languages
	Hardware Description Languages
	Hardware Description Languages
	Hardware Description Languages
	Bildnummer 6
	APL
	Bildnummer 8
	Late 70s
	Bildnummer 10
	Bildnummer 11
	Bildnummer 12
	Bildnummer 13
	Bildnummer 14
	Users!
	Users!
	Plessey designers write
	Bildnummer 18
	Bildnummer 19
	Algorithms in hardware
	In pictures
	Bildnummer 22
	two
	two (ilv f) ilv (two f)
	Bildnummer 25
	Bildnummer 26
	Bildnummer 27
	Bildnummer 28
	Bildnummer 29
	Batcher’s sorter (bitonic)
	Bildnummer 31
	Bildnummer 32
	Bildnummer 33
	Bildnummer 34
	More combinators
	Bildnummer 36
	Bildnummer 37
	Bildnummer 38
	Bildnummer 39
	median
	median
	SEARCH
	SEARCH
	Bildnummer 44
	SEARCH (examples)
	SEARCH (examples)
	SEARCH (examples)
	Design FOR verification
	HW + FP in the real world?
	HW + FP in the real world?
	HW + FP in the real world?
	HW + FP in the real world?
	HW + FP in the real world?
	Examples of fl as Design Language
	Example of fl as Specification Language
	Example of Systems Built in fl
	Bildnummer 57
	Bluespec
	Bluespec
	Bluespec
	Bildnummer 61
	Bildnummer 62
	Bildnummer 63
	Bildnummer 64
	Bildnummer 65
	Bildnummer 66
	BSV
	BSV
	BSV
	Bluecheck
	stack interface
	Bildnummer 72
	Bildnummer 73
	Synthesisable!
	Bildnummer 75
	Pushing verification
	Pushing verification
	Pushing verification
	Pushing verification
	Lava(s)
	Lava(s)
	Chisel
	Cryptol
	Bildnummer 84
	Bildnummer 85
	Bildnummer 86
	Bildnummer 87
	Bildnummer 88
	Bildnummer 89
	Bildnummer 90
	Bildnummer 91
	Bildnummer 92
	Bildnummer 93
	Bildnummer 94
	Programming
	Programming
	Bildnummer 97
	Bildnummer 98

